Seventh Standard

Subject:-General Science

Topic:- Transmission Of Heat

Subtopic:-Types of Heat Transfer

Source:- Wikipedia



Types of Heat Transfer

                              Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy and heat between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.


Heat is defined in physics as the transfer of thermal energy across a well-defined boundary around a thermodynamic system. It is a characteristic of a process and is not statically contained in matter. In engineering contexts, however, the term heat transfer has acquired a specific usage, despite its literal redundancy of the characterization of transfer. In these contexts, heat is taken as synonymous to thermal energy. This usage has its origin in the historical interpretation of heat as a fluid (caloric) that can be transferred by various causes, and that is also common in the language of laymen and everyday life.

Fundamental methods of heat transfer in engineering include conduction, convection, and radiation. Physical laws describe the behavior and characteristics of each of these methods. Real systems often exhibit a complicated combination of them. Heat transfer methods are used in numerous disciplines, such as automotive engineering, thermal management of electronic devices and systems, climate control, insulation, materials processing, and power plant engineering.

Various mathematical methods have been developed to solve or approximate the results of heat transfer in systems. Heat transfer is a path function (or process quantity), as opposed to a state quantity; therefore, the amount of heat transferred in a thermodynamic process that changes the state of a system depends on how that process occurs, not only the net difference between the initial and final states of the process. Heat flux is a quantitative, vectorial representation of the heat flow through a surface.

Heat transfer is typically studied as part of a general chemical engineering  or mechanical engineering curriculum. Typically, thermodynamics is a prerequisite for heat transfer courses, as the laws of thermodynamics are essential to the mechanism of heat transfer. Other courses related to heat transfer include energy conversion, thermo fluids, and mass transfer.

The transport equations for thermal energy (Fourier’s law), mechanical momentum (Newton’s law for fluids), and mass transfer (Fick’s laws of diffusion) are similar and analogies among these three transport processes have been developed to facilitate prediction of conversion from any one to the others.


The fundamental modes of heat transfer are:


On a microscopic scale, heat conduction occurs as hot, rapidly moving or vibrating atoms and molecules interact with neighboring atoms and molecules, transferring some of their energy (heat) to these neighboring particles. In other words, heat is transferred by conduction when adjacent atoms vibrate against one another, or as electrons move from one atom to another. Conduction is the most significant means of heat transfer within a solid or between solid objects in thermal contact. Fluids—especially gases—are less conductive. Thermal contact conductance is the study of heat conduction between solid bodies in contact.

Steady state conduction (see Fourier’s law) is a form of conduction that happens when the temperature difference driving the conduction is constant, so that after an equilibration time, the spatial distribution of temperatures in the conducting object does not change any further. In steady state conduction, the amount of heat entering a section is equal to amount of heat coming out.

Transient conduction (see Heat equation) occurs when the temperature within an object changes as a function of time. Analysis of transient systems is more complex and often calls for the application of approximation theories or numerical analysis by computer.[6]


Convective heat transfer, or convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. (In physics, the term fluid means any substance that deforms under shear stress; it includes liquids, gases, plasmas, and some plastic solids.) Bulk motion of fluid enhances heat transfer in many physical situations, such as (for example) between a solid surface and the fluid. Convection is usually the dominant form of heat transfer in liquids and gases. Although sometimes discussed as a third method of heat transfer, convection is usually used to describe the combined effects of heat conduction within the fluid (diffusion) and heat transference by bulk fluid flow streaming.

The process of transport by fluid streaming is known as advection, but pure advection is a term that is generally associated only with mass transport in fluids, such as advection of pebbles in a river. In the case of heat transfer in fluids, where transport by advection in a fluid is always also accompanied by transport via heat diffusion (also known as heat conduction) the process of heat convection is understood to refer to the sum of heat transport by advection and diffusion/conduction.

Free, or natural, convection occurs when bulk fluid motion (steams and currents) are caused by buoyancy forces that result from density variations due to variations of temperature in the fluid. Forced convection is a term used when the streams and currents in the fluid are induced by external means—such as fans, stirrers, and pumps—creating an artificially induced convection current.

Convective heating or cooling in some circumstances may be described by Newton’s law of cooling: “The rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings.” However, by definition, the validity of Newton’s law of cooling requires that the rate of heat loss from convection be a linear function of (“proportional to”) the temperature difference that drives heat transfer, and in convective cooling this is sometimes not the case. In general, convection is not linearly dependent on temperature gradients, and in some cases is strongly nonlinear. In these cases, Newton’s law does not apply.


                           Thermal radiation is energy emitted by matter as electromagnetic waves due to the pool of thermal energy that all matter possesses that has a temperature above absolute zero. Thermal radiation propagates without the presence of matter through the vacuum of space.

Thermal radiation is a direct result of the random movements of atoms and molecules in matter. Since these atoms and molecules are composed of charged particles (protons and electrons), their movement results in the emission of electromagnetic radiation, which carries energy away from the surface.

Unlike conductive and convective forms of heat transfer, thermal radiation can be concentrated in a small spot by using reflecting mirrors, which is exploited in concentrating solar power generation. For example, the sunlight reflected from mirrors heats the PS10 solar power tower and during the day it can heat water to 285 °C (545 °F).

Phase changes

Transfer of heat through a phase transition in the medium—such as water-to-ice, water-to-steam, steam-to-water, or ice-to-water—involves significant energy and is exploited in many ways: steam engines, refrigerators, etc. For example, the Mason equation is an approximate analytical expression for the growth of a water droplet based on the effects of heat transport on evaporation and condensation.

1] Boiling

Heat transfer in boiling fluids is complex, but of considerable technical importance. It is characterized by an S-shaped curve relating heat flux to surface temperature difference.

At low driving temperatures, no boiling occurs and the heat transfer rate is controlled by the usual single-phase mechanisms. As the surface temperature is increased, local boiling occurs and vapor bubbles nucleate, grow into the surrounding cooler fluid, and collapse. This is sub-cooled nucleate boiling, and is a very efficient heat transfer mechanism. At high bubble generation rates, the bubbles begin to interfere and the heat flux no longer increases rapidly with surface temperature (this is the departure from nucleate boiling, or DNB). At higher temperatures still, a maximum in the heat flux is reached (the critical heat flux, or CHF).

The regime of falling heat transfer that follows is not easy to study, but is believed to be characterized by alternate periods of nucleate and film boiling. Nucleate boiling slows the heat transfer due to gas bubbles on the heater’s surface; as mentioned, gas-phase thermal conductivity is much lower than liquid-phase thermal conductivity, so the outcome is a kind of “gas thermal barrier”.

At higher temperatures still, the hydro dynamically-quieter regime of film boiling is reached. Heat fluxes across the stable vapor layers are low, but rise slowly with temperature. Any contact between fluid and the surface that may be seen probably leads to the extremely rapid nucleation of a fresh vapor layer (“spontaneous nucleation”).

2] Condensation

Condensation occurs when a vapor is cooled and changes its phase to a liquid. Condensation heat transfer, like boiling, is of great significance in industry. During condensation, the latent heat of vaporization must be released. The amount of the heat is the same as that absorbed during vaporization at the same fluid pressure.

There are several types of condensation:- Homogeneous condensation, as during a formation of fog, Condensation in direct contact with sub cooled liquid, Condensation on direct contact with a cooling wall of a heat exchanger: This is the most common mode used in industry, Filmwise condensation is when a liquid film is formed on the subcooled surface, and usually occurs when the liquid wets the surface, Dropwise condensation is when liquid drops are formed on the sub cooled surface, and usually occurs when the liquid does not wet the surface.

Applications and techniques

Heat transfer has broad application to the functioning of numerous devices and systems. Heat-transfer principles may be used to preserve, increase, or decrease temperature in a wide variety of circumstances.

1] Insulation and radiant barriers

Thermal insulators are materials specifically designed to reduce the flow of heat by limiting conduction, convection, or both. Radiant barriers are materials that  reflect  radiation, and therefore reduce the flow of heat from radiation sources. Good insulators are not necessarily good radiant barriers, and vice versa. Metal, for instance, is an excellent reflector and a poor insulator.

2] Heat exchangers

A heat exchanger is a tool built for efficient heat transfer from one fluid to another, whether the fluids are separated by a solid wall so that they never mix, or the fluids are in direct contact. Heat exchangers are widely used in refrigeration, air conditioning, space heating, power generation, and chemical processing. One common example of a heat exchanger is a car’s radiator, in which the hot coolant fluid is cooled by the flow of air over the radiator’s surface.

Car Radiator

                                Common constructions for heat exchanger include shell and tube, double pipe, extruded finned pipe, spiral fin pipe, u-tube, and stacked plate.

3] Heat dissipation

A heat sink is a component that transfers heat generated within a solid material to a fluid medium, such as air or a liquid. Examples of heat sinks are the heat exchangers used in refrigeration and air conditioning systems, and the radiator in a car (which is also a heat exchanger). Heat sinks also help to cool electronic and optoelectronic devices such as CPUs, higher-power lasers, and light-emitting diodes (LEDs). A heat sink uses its extended surfaces to increase the surface area in contact with the cooling fluid.

4] Buildings

In cold climates, houses with their heating systems form dissipative systems, often resulting in a loss of energy (known colloquially as “Heat Bleed”) that makes home interiors uncomfortably cool or cold. For the comfort of the inhabitants, the interiors must be maintained out of thermal equilibrium with the external surroundings. In effect, these domestic residences are islands of warmth in a sea of cold, and the thermal gradient between the inside and outside is often quite steep. This can lead to problems such as condensation and uncomfortable air currents, which—if left unaddressed—can cause cosmetic or structural damage to the property.

5] Evaporative cooling

Evaporative cooling is a physical phenomenon in which evaporation of a liquid, typically into surrounding air, cools an object or a liquid in contact with it. Latent heat describes the amount of heat that is needed to evaporate the liquid; this heat comes from the liquid itself and the surrounding gas and surfaces. The greater the difference between the  two temperatures, the greater the evaporative cooling effect. When the temperatures are the same, no net evaporation of water in air occurs; thus, there is no cooling effect. A simple example of natural evaporative cooling is perspiration, or sweat, which the body secretes in order to cool itself. An evaporative cooler is a device that cools air through the simple evaporation of water.

6] Radiative cooling

Radiative cooling is the process by which a body loses heat by radiation. It is an important effect in the Earth’s atmosphere. In the case of the Earth-atmosphere system, it refers to the process by which long-wave (infrared) radiation is emitted to balance the absorption of short-wave (visible) energy from the Sun. Convective transport of heat and evaporative transport of latent heat both remove heat from the surface and redistribute it in the atmosphere, making it available for radiative transport at higher altitudes.

7] Laser cooling

Laser cooling refers to techniques in which atomic and molecular samples are cooled through the interaction with one or more laser light fields. The most common method of laser cooling is Doppler cooling.

8] Magnetic cooling

Magnetic evaporative cooling is a technique for lowering the temperature of a group of atoms. The process confines atoms using a magnetic field. Over time, individual atoms will become much more energetic than the others due to random collisions, and will escape—removing energy from the system and reducing the temperature of the remaining group. This process is similar to the familiar process by which standing water becomes water vapor.

9] Heat transfer in the human body

The principles of heat transfer in engineering systems can be applied to the human body in order to determine how the body transfers heat. Heat is produced in the body by the continuous metabolism of nutrients which provides energy for the systems of the body. The human body must maintain a consistent internal temperature in order to maintain healthy bodily functions. Therefore, excess heat must be dissipated from the body to keep it from overheating.


About these ads