Category: Circulation of Blood


Seventh Standard

Subject:-General Science

Topic:- Circulation of Blood

Subtopic:-Circulatory System

Source:- Wikipedia

 

 

 

Circulatory System

                                     The circulatory system is an organ system that passes nutrients (such as amino acids, electrolytes and lymph), gases, hormones, blood cells, etc. to and from cells in the body to help fight diseases, stabilize body temperature and pH, and to maintain homeostasis. This system may be seen strictly as a blood distribution network, but some consider the circulatory system as composed of the cardiovascular system, which distributes blood, and the lymphatic system, which returns excess filtered blood plasma from the interstitial fluid (between cells) as lymph. While humans, as well as other vertebrates, have a closed cardiovascular system (meaning that the blood never leaves the network of arteries,  veins and capillaries), some invertebrate groups have an open cardiovascular system. The most primitive animal phyla lack circulatory systems. The lymphatic system, on the other hand, is an open system providing an accessory route for excess interstitial fluid to get returned to the blood.

Two types of fluids move through the circulatory system: blood and lymph. Lymph is essentially recycled blood plasma after it has been filtered from the blood cells and returned to the lymphatic system. The blood, heart, and blood vessels form the cardiovascular system. The lymph, lymph nodes, and lymph vessels form the lymphatic system. The cardiovascular system and the lymphatic system collectively make up the circulatory system.

Human cardiovascular system

The essential components of the human cardiovascular system are the heart, blood, and blood vessels. It includes: the pulmonary circulation, a “loop” through the lungs where blood is oxygenated; and the systemic circulation, a “loop” through the rest of the body to provide oxygenated blood. An average adult contains five to six quarts (roughly 4.7 to 5.7 liters) of blood, accounting for approximately 7% of their total body weight. Blood consists of plasma, red blood cells, white blood cells, and platelets. Also, the digestive system works with the circulatory system to provide the nutrients the system needs to keep the heart pumping.

Pulmonary circulation

The pulmonary circulatory system is the portion of the cardiovascular system in which oxygen-depleted blood is pumped away from the heart, via the pulmonary artery, to the lungs and returned, oxygenated, to the heart via the pulmonary vein. Oxygen deprived blood from the vena cava, enters the right atrium of the heart and flows through the tricuspid valve (right atrioventricular valve) into the right ventricle, from which it is then pumped through the pulmonary semilunar valve into the pulmonary artery to the lungs. Gas exchange occurs in the lungs, whereby CO2 is released from the blood, and oxygen is absorbed. The pulmonary vein returns the now oxygen-rich blood to the heart.

Systemic circulation

Systemic circulation is the circulation of the blood of to all parts of the body except the lungs. Systemic circulation is the portion of the cardiovascular system which transports oxygenated blood away from the heart, to the rest of the body, and returns oxygen-depleted blood back to the heart. Systemic circulation is, distance-wise, much longer than pulmonary circulation, transporting blood to every part of the body.

View from the front

Coronary circulation

The coronary circulatory system provides a blood supply to the heart. As it provides oxygenated blood to the heart, it is by definition a part of the systemic circulatory system.

Heart

The heart pumps oxygenated blood to the body and deoxygenated blood to the lungs. In the human heart there is one atrium and one ventricle for each circulation, and with both a systemic and a pulmonary circulation there are four chambers in total: left atrium, left ventricle, right atrium and right ventricle. The right atrium is the upper chamber of the right side of the heart. The blood that is returned to the right atrium is deoxygenated (poor in oxygen) and passed into the right ventricle to be pumped through the pulmonary artery to the lungs for re-oxygenation and removal of carbon dioxide. The left atrium receives newly oxygenated blood from the lungs as well as the pulmonary vein which is passed into the strong left ventricle to be pumped through the aorta to the different organs of the body.

Closed cardiovascular system

The cardiovascular systems of humans are closed, meaning that the blood never leaves the network of blood vessels. In contrast, oxygen and nutrients diffuse across the blood vessel layers and enters interstitial fluid, which carries oxygen and nutrients to the target cells, and carbon dioxide and wastes in the opposite direction. The other component of the circulatory system, the lymphatic system, is not closed.

Oxygen transportation

About 98.5% of the oxygen in a sample of arterial blood in a healthy human breathing air at sea-level pressure is chemically combined with hemoglobin molecules. About 1.5% is physically dissolved in the other blood liquids and not connected to hemoglobin. The hemoglobin molecule is the primary transporter of oxygen in mammals and many other species.

Development

The development of the circulatory system initially occurs by the process of vasculogenesis. The human arterial and venous systems develop from different embryonic areas. While the arterial system develops mainly from the aortic arches, the venous system arises from three bilateral veins during weeks 4 – 8 of human development.

Arterial development

The human arterial system originate from the aortic arches and from the dorsal aortae starting from week 4 of human development. Aortic arch 1 almost completely regresses except to form the maxillary arteries. Aortic arch 2 also completely regresses except to form the stapedial arteries. The definitive formation of the arterial system arise from aortic arches 3, 4 and 6. While aortic arch 5 completely regresses.

The dorsal aortae are initially bilateral and then fuse to form the definitive dorsal aorta. Approximately 30 posterolateral branches arise off the aorta and will form the intercostal arteries, upper and lower extremity arteries, lumbar arteries and the lateral sacral arteries. The lateral branches of the aorta form the definitive renal, suprar renal and gonadal arteries. Finally, the ventral branches of the aorta consist of the vitelline arteries and umbilical arteries. The vitelline arteries form the celiac, superior and inferior mesenteric arteries of the gastrointestinal tract. After birth, the umbilical arteries will form theinternal iliac arteries.

Venous development

The human venous system develops mainly from the vitelline veins, the umbilical veins and the cardinal veins, all of which empty into the sinus venosus.

Measurement techniques

  • Electrocardiogram—for cardiac electrophysiology
  • Sphygmomanometer and stethoscope—for blood pressure
  • Pulse meter—for cardiac function (heart rate, rhythm, dropped beats)
  • Pulse—commonly used to determine the heart rate in absence of certain cardiac pathologies
  • Heart rate variability—used to measure variations of time intervals between heart beats
  • Nail bed blanching test—test for perfusion
  • Vessel cannula or catheter pressure measurement—pulmonary wedge pressure or in older animal experiments.

 

Seventh Standard

Subject:-General Science

Topic:- Circulation of Blood

Subtopic:-Blood Groups

Source:- Wikipedia

 

 

Dialysis

                       In medicine dialysis meaning dissolution, (dia, meaning through, and lysis, meaning loosening or splitting) is a process for removing waste and excess water from the blood, and is used primarily to provide an artificial replacement for lost kidney function in people with renal failure. Dialysis may be used for those with an acute disturbance in kidney function (acute kidney injury, previously acute renal failure), or progressive but chronically worsening kidney function–a state known as chronic kidney disease stage 5 (previously chronic renal failure or end-stage renal disease). The latter form may develop over months or years, but in contrast to acute kidney injury is not usually reversible, and dialysis is regarded as a “holding measure” until a renal transplant can be performed, or sometimes as the only supportive measure in those for whom a transplant would be inappropriate.

The kidneys have important roles in maintaining health. When healthy, the kidneys maintain the body’s internal equilibrium of water and minerals (sodium, potassium, chloride, calcium, phosphorus, magnesium, sulfate). The acidic metabolism end-products that the body cannot get rid of via respiration are also excreted through the kidneys. The kidneys also function as a part of the endocrine system, producing erythropoietin and calcitriol. Erythropoietin is involved in the production of red blood cells and calcitriol plays a role in bone formation. Dialysis is an imperfect treatment to replace kidney function because it does not correct the endocrine functions of the kidney. Dialysis treatments replace some of these functions through diffusion (waste removal) and ultra filtration (fluid removal).

Principle

A hemodialysis machine

                   Dialysis works on the principles of the diffusion of solutes and ultra filtration of fluid across a semi-permeable membrane. Diffusion describes a property of substances in water. Substances in water tend to move from an area of high concentration to an area of low concentration. Blood flows by one side of a semi-permeable membrane, and a dialysate, or special dialysis fluid, flows by the opposite side. A semipermeable membrane is a thin layer of material that contains holes of various sizes, or pores. Smaller solutes and fluid pass through the membrane, but the membrane blocks the passage of larger substances (for example, red blood cells, large proteins). This replicates the filtering process that takes place in the kidneys, when the blood enters the kidneys and the larger substances are separated from the smaller ones in the glomerulus.

The two main types of dialysis, hemodialysis and Peritoneal dialysis, remove wastes and excess water from the blood in different ways. Hemodialysis removes wastes and water by circulating blood outside the body through an external filter, called a dialyzer, that contains a semipermeable membrane. The blood flows in one direction and the  dialysate  flows in the opposite. The counter-current flow of the blood and dialysate maximizes the concentration gradient of solutes between the blood and dialysate, which helps to remove more urea and creatinine from the blood. The concentrations of solutes (for example  potassium, phosphorus, and urea) are undesirably high in the blood, but low or absent in the dialysis solution, and constant replacement of the dialysate ensures that the concentration of undesired solutes is kept low on this side of the membrane.

The dialysis solution has levels of minerals like potassium and calcium that are similar to their natural concentration in healthy blood. For another solute, bicarbonate, dialysis solution level is set at a slightly higher level than in normal blood, to encourage diffusion of bicarbonate into the blood, to act as a pH buffer to neutralize the metabolic acidosis that is often present in these patients. The levels of the components of dialysate are typically prescribed by a nephrologist according to the needs of the individual patient.

In peritoneal dialysis, wastes and water are removed from the blood inside the body using the peritoneal membrane of the peritoneum as a natural semipermeable membrane. Wastes and excess water move from the blood, across the peritoneal membrane, and into a special dialysis solution, called dialysate, in the abdominal cavity which has a composition similar to the fluid portion of blood.

Types

There are three primary and two secondary types of dialysis: hemodialysis  (primary),  peritoneal dialysis (primary), hemofiltration (primary), hemodiafiltration (secondary), and intestinal dialysis(secondary).

1] Hemodialysis

Hemodialysis schematic

                  In hemodialysis, the patient’s blood is pumped through the blood compartment of a dialyzer, exposing it to a partially permeable membrane. The dialyzer is composed of thousands of tiny synthetic hollow fibers. The fiber wall acts as the semipermeable membrane. Blood flows through the fibers, dialysis solution flows around the outside of the fibers, and water and wastes move between these two solutions. The cleansed blood is then returned via the circuit back to the body.

Ultrafiltration occurs by increasing the hydrostatic pressure across the dialyzer membrane. This usually is done by applying a negative pressure to the dialysate compartment of the dialyzer. This pressure gradient causes water and dissolved solutes to move from blood to dialysate, and allows the removal of several litres of excess fluid during a typical 3- to 5-hour treatment. This type of hemodialysis is usually called “nocturnal daily hemodialysis”, which a study has shown a significant improvement in both small and large molecular weight clearance and decrease the requirement of taking phosphate binders. These frequent long treatments are often done at home while sleeping, but home dialysis is a flexible modality and schedules can be changed day to day, week to week. In general, studies have shown that both increased treatment length and frequency are clinically beneficial.

2] Peritoneal dialysis

In peritoneal dialysis, a sterile solution containing glucose is run through a tube into the peritoneal cavity, the abdominal body cavity around the intestine, where the peritoneal membrane acts as a partially permeable membrane. The peritoneal membrane or peritoneum is a layer of tissue containing blood vessels that lines and surrounds the peritoneal, or abdominal, cavity and the internal abdominal organs (stomach, spleen, liver, and intestines). The dialysate is left there for a period of time to absorb waste products, and then it is drained out through the tube and discarded. This cycle or “exchange” is normally repeated 4-5 times during the day, (sometimes more often overnight with an automated system). Each time the dialysate fills and empties from the abdomen is called one exchange. A dwell time means that the time of dialysate stay in patient’s abdominal cavity—wastes, chemicals and extra fluid move from patient’s blood to the dialysate across the peritoneum.

A drain process is the process after the dwell time, the dialysate full with waste products and extra fluid is drained out of patient’s blood. Ultrafiltration occurs via osmosis; the dialysis solution used contains a high concentration of glucose, and the resulting osmotic pressure causes fluid to move from the blood into the dialysate. As a result, more fluid is drained than was instilled. Peritoneal dialysis is less efficient than hemodialysis, but because it is carried out for a longer period of time the net effect in terms of removal of waste products and of salt and water are similar to hemodialysis. Peritoneal dialysis is carried out at home by the patient. Although support is helpful, it is not essential. It does free patients from the routine of having to go to a dialysis clinic on a fixed schedule multiple times per week, and it can be done while travelling with a minimum of specialized equipment.

3] Hemofiltration

Hemofiltration is a similar treatment to hemodialysis, but it makes use of a different principle. The blood is pumped through a dialyzer or “hemofilter” as in dialysis, but no dialysate is used. A pressure gradient is applied; as a result, water moves across the very permeable membrane rapidly, “dragging” along with it many dissolved substances, including ones with large molecular weights, which are not cleared as well by hemodialysis. Salts and water lost from the blood during this process are replaced with a “substitution fluid” that is infused into the extracorporeal circuit during the treatment. Hemodiafiltration is a term used to describe several methods of combining hemodialysis and hemofiltration in one process.

4] Hemodiafiltration

Hemodiafiltration is a combination of hemodialysis and hemofiltration.

5] Intestinal dialysis

In intestinal dialysis, the diet is supplemented with soluble fibres such as acacia fibre, which is digested by bacteria in the colon. This bacterial growth increases the amount of nitrogen that is eliminated in fecal waste. An alternative approach utilizes the ingestion of 1 to 1.5 liters of non-absorbable solutions of polyethylene glycol or mannitol every fourth hour.

Starting indications

The decision to initiate dialysis or hemofiltration in patients with renal failure depends on several factors. These can be divided into acute or chronic indications. Indications for dialysis in the patient with acute kidney injury are summarized with the vowel acronym of “AEIOU”:

  1. Acidemia from metabolic acidosis in situations in which correction with sodium bicarbonate is impractical or may result in fluid overload
  2. Electrolyte abnormality, such as severe hyperkalemia, especially when combined with AKI
  3. Intoxication, that is, acute poisoning with a dialyzable substance. These substances can be represented by the mnemonic SLIME: salicylic acid, lithium, isopropanol, Magnesium-containing laxatives, and ethylene glycol
  4. Overload of fluid not expected to respond to treatment with diuretics
  5. Uremia complications, such as pericarditis, encephalopathy, or gastrointestinal bleeding.
  • Chronic indications for dialysis:
  1. Symptomatic renal failure
  2. Low glomerular filtration rate (GFR) (RRT often recommended to commence at a GFR of less than 10-15 mls/min/1.73m2). In diabetics, dialysis is started earlier.
  3. Difficulty in medically controlling fluid overload, serum potassium, and/or serum phosphorus when the GFR is very low

 

Seventh Standard

Subject:-General Science

Topic:- Circulation of Blood

Subtopic:-Blood Groups

Source:- Wikipedia

 

Blood Groups

 

The most well-known and medically important blood types are in the ABO  group.  They were discovered in 1900 and 1901 at the University of Vienna by Karl Landsteiner in the process of trying to learn why blood transfusions sometimes cause death and at other times save a patient.  In 1930, he belatedly received the Nobel Prize for his discovery of blood types.

Karl Landsteiner

                     All humans and many other primates can be typed for the ABO blood group.  There are four principal types: A, B, AB, and O.  There are two antigens and two antibodies that are mostly responsible for the ABO types.  The specific combination of these four components determines an individual’s type in most cases.  The table below shows the possible permutations of antigens and antibodies with the corresponding ABO type (“yes” indicates the presence of a component and “no” indicates its absence in the blood of an individual)

ABO
Blood Type
   
Antigen
A
Antigen
B
    Antibody
anti-A
  Antibody
Anti-B
 

 

 

 
A   yes no   no yes  
B   no yes   yes no  
O   no no   yes yes  
AB   yes yes   no no  

 

 

 

For example, people with type A blood will have the A antigen on the surface of their red cells . As a result, anti-A antibodies will not be produced by them because they would cause the destruction of their own blood.  However, if B type blood is injected into their systems, anti-B antibodies in their plasma will recognize it as alien and burst or agglutinate the introduced red cells in order to cleanse the blood of alien protein.

Individuals with type O blood do not produce ABO antigens.  Therefore, their blood normally will not be rejected when it is given to others with different ABO types.  As a result, type O people are universal donors for transfusions, but they can receive only type O blood themselves.  Those who have type AB blood do not make any ABO antibodies.  Their blood does not discriminate against any other ABO type.  Consequently, they are universal receivers for transfusions, but their blood will be agglutinated when given to people with every other type because they produce both kinds of antigens.

It is easy and inexpensive to determine an individual’s ABO type from a few drops of blood.  A serum containing anti-A antibodies is mixed with some of the blood.  Another serum with anti-B antibodies is mixed with the remaining sample.   Whether or not agglutination occurs in either sample indicates the ABO type.   It is a simple process of elimination of the possibilities.  For instance, if an individual’s blood sample is agglutinated by the anti-A antibody, but not the anti-B antibody, it means that the A antigen is present but not the B antigen.  Therefore, the blood type is A.

Rh blood group system

The Rh system is the second most significant blood-group system in human-blood transfusion with currently 50 antigens. The most significant Rh antigen is the D antigen, because it is the most likely to provoke an immune system response of the five main Rh antigens. It is common for D-negative individuals not to have any anti-D IgG or IgM antibodies, because anti-D antibodies are not usually produced by sensitization against environmental substances.

However, D-negative individuals can produce IgG anti-D antibodies following a sensitizing event: possibly a fetomaternal transfusion of blood from a fetus in pregnancy or occasionally a blood transfusion with D positive RBCs. Rh disease can develop in these cases. Rh negative blood types are much less in proportion of Asian populations (0.3%) than they are in White (15%). In the table below, the presence or absence of the Rh antigens is signified by the + or − sign, so that for example the A− group does not have any of the Rh antigens.

Universal donors and universal recipients

With regard to transfusions of packed red blood cells, individuals with type O Rh D negative blood are often called universal donors, and those with type AB Rh D positive blood are called universal recipients; however, these terms are only generally true with respect to possible reactions of the recipient’s anti-A and anti-B antibodies to transfused red blood cells, and also possible sensitization to Rh D antigens. One exception is individuals with hh antigen system (also known as the Bombay phenotype) who can only receive blood safely from other hh donors, because they form antibodies against the H antigen present on all red blood cells.

Blood donors with particularly strong anti-A, anti-B or any atypical blood group antibody are excluded from blood donation. The possible reactions of anti-A and anti-B antibodies present in the transfused blood to the recipients RBCs need not be considered, because a relatively small volume of plasma containing antibodies is transfused.

By way of example: considering the transfusion of O Rh D negative blood (universal donor blood) into a recipient of blood group A Rh D positive, an immune reaction between the recipient’s anti-B antibodies and the transfused RBCs is not anticipated. However, the relatively small amount of plasma in the transfused blood contains anti-A antibodies, which could react with the A antigens on the surface of the recipients RBCs, but a significant reaction is unlikely because of the dilution factors. Rh D sensitization is not anticipated.

Additionally, red blood cell surface antigens other than A, B and Rh D, might cause adverse reactions and sensitization, if they can bind to the corresponding antibodies to generate an immune response. Transfusions are further complicated because platelets and white blood cells (WBCs) have their own systems of surface antigens, and sensitization to platelet or WBC antigens can occur as a result of transfusion.

With regard to transfusions of plasma, this situation is reversed. Type O plasma, containing both anti-A and anti-B antibodies, can only be given to O recipients. The antibodies will attack the antigens on any other blood type. Conversely, AB plasma can be given to patients of any ABO blood group due to not containing any anti-A or anti-B antibodies.

Environmental Factors

While blood types are 100% genetically inherited, the environment potentially can determine which blood types in a population will be passed on more frequently to the next generation.  It does this through natural selection.  Specific ABO blood types are thought to be linked with increased or decreased susceptibility to particular diseases.  For instance, individuals with type A blood are at a somewhat higher risk of contracting smallpox and developing cancer of the esophagus, pancreas, and stomach.  People who are type O are at a higher risk for contracting cholera and plague as well as developing duodenal and peptic ulcers.  Research suggests that they are also more tasty to mosquitoes.  That could be a significant factor in contracting malaria.
A blood type (also called a blood group) is a classification of blood based on the presence or  absence of inherited antigenic substances on the surface of red blood cells  (RBCs). These antigens may be proteins, carbohydrates, glycoproteins, or glycolipids, depending on the blood group system. Some of these antigens are also present on the surface of other types of cells of various tissues. Several of these red blood cell surface antigens can stem from oneallele (or very closely linked genes) and collectively form a blood group system. Blood types are inherited and represent contributions from both parents. A total of 30 human blood group systems are now recognized by the International Society of Blood Transfusion (ISBT).

Many pregnant women carry a fetus with a blood type different from their own, and the mother can form antibodies against fetal RBCs. Sometimes these maternal antibodies are IgG, a small immunoglobulin, which can cross the placenta and cause hemolysis of fetal RBCs, which in turn can lead to hemolytic disease of the newborn called erythroblastosis fetalis, an illness of low fetal blood counts that ranges from mild to severe. Sometimes it can be lethal for fetus called hydrops fetalis.

Other blood group systems

32 blood-group systems have been identified, including the ABO and Rh systems. Thus, in addition to the ABO antigens and Rh antigens, many other antigens are expressed on the RBC surface membrane. For example, an individual can be AB, D positive, and at the same time M and N positive (MNS system), K positive (Kell system), Lea or Leb negative (Lewis system), and so on, being positive or negative for each blood group system antigen. Many of the blood group systems were named after the patients in whom the corresponding antibodies were initially encountered.